Nature-Based Solutions vs. Human-Induced Approaches for Alpine Grassland Ecosystem: “Climate-Help” Overwhelms “Human Act” to Promote Ecological Restoration in the Three-River-Source Region of Qinghai–Tibet Plateau

Author:

Li Zhouyuan1ORCID,Shen Qiyu1ORCID,Fan Wendi1,Dong Shikui1ORCID,Wang Ziying1,Xu Yudan2,Ma Tianxiao3,Cao Yue4

Affiliation:

1. China Grassland Research Center, School of Grassland Science, Beijing Forestry University, Beijing 100083, China

2. College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China

3. CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

4. Department of Landscape Architecture, School of Architecture, Tsinghua University, Beijing 100084, China

Abstract

How climate change and human activities drive the evolution of the regional environment and where the quality of ecosystems improve or decline over time have become widespread concerns. In this study, we took the Three-River-Source (TRS) region of the Qinghai–Tibet Plateau as a case, aiming to identify and quantify the contribution of the natural and anthropogenic factors to the ecosystem changes over the past years from 1980 to 2018 using the methods of remote sensing and spatial statistical analysis. Based on the land cover map interpreted by reference to satellite remote sensing imagery data, we defined the Ecological Restoration Area Proportion (ERAP) as the bare land patch decrement to indicate the ecologically restored quantity in space. Assembling the restoration project information, we digitalized and vectorized the ecological Restoration Intensity (RI) including the spatial range and temporal duration. Combining the ERAP and the net primary productivity (NPP), which indicates the quantity and quality of ecosystems, respectively, the ecological asset Index (EAI) was developed and calculated. Having integrated the datasets of the vegetation monitoring, climatic factors, geographical factors, and human activities, we performed multi-variable analysis of the attribution of how the change in the EAI, the NPP, and the EAI have been affected by these factors together. The NPP of the middle and eastern parts of the TRS region has improved the most, as the average growth rate of NPP reached approximately 2.5 kg C/m2/10a. Due to such dynamic pattern, we found that human-induced re-vegetation has made limited contributions in our multi-regression model as the variance explained by the RI merely amounts to 4.4% to 8.8%, while the changes were mostly dependent on the regional temperature and the precipitation which contributed over 45% to the ecological restoration on average. It was summarized that “climate-help” overwhelms “human act” in such alpine grassland ecosystem. The regression results for the different aspects of the ERAP and NPP demonstrated that the ecological restoration project helped most in regard to ecosystem quality improvement rather than the restored ecosystem quantity. Our study has developed a comprehensive assessment methodology that can be reused to account for more ecological asset. The case is an example of an alpine ecosystem in which the success of ecological restoration needs favorable climatic conditions as supporting evidence for the nature-based solution.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Key R&D Program of China

National Natural Science Foundation of China

National Foreign Expert Project

College Students’ Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3