Affiliation:
1. School of Electronics and Communication Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
2. Department of Early Warning Technology, Air Force Early Warning Academy, Wuhan 430019, China
3. Institute of Remote Sensing Satellite, China Academy of Space Technology, Beijing 100094, China
Abstract
Geosynchronous spaceborne–airborne (GEO-SA) ultra-high-frequency ultra-wideband bistatic synthetic aperture radar (UHF UWB BiSAR) provides high-precision images for marine and polar environments, which are pivotal in glacier monitoring and sea ice thickness measurement for polar ocean mapping and navigation. Contrasting with traditional high-frequency BiSAR, it faces unique challenges, such as the considerable spatial variability, significant range–azimuth coupling, and vast volumes of echo data, which impede high-resolution image reconstruction. This paper presents an improved bistatic nonlinear chirp scaling (NLCS) algorithm for imaging oceanic scenes with GEO-SA UHF UWB BiSAR. This methodology extends the two-dimensional (2-D) spectrum up to the sixth order via the method of series reversion (MSR) to meet accuracy demands and then employs an elliptical model to elucidate the alterations in the azimuth frequency modulation (FM) rate mismatch. Initially, the imaging geometry and signal model are introduced, and then a separation of bistatic slant ranges based on the configuration is proposed. In addition, during range processing, after eliminating linear range cell migration (RCM), the derivation process for the sixth-order 2-D spectrum is detailed and an improved filter is applied to correct the high-order RCM. Finally, during azimuth processing, the causes of the FM rate mismatch are analyzed, a cubic perturbation function derived from the elliptical model is used for FM rate equalization, and a unified sixth-order filter is applied to complete the azimuth compression. Experimental results with point targets and natural oceanic scenes validate the outstanding efficacy of the proposed NLCS algorithm, particularly in imaging quality enhancements for GEO-SA UHF UWB BiSAR.
Funder
Shenzhen Science and Technology Program
Guangdong Basic and Applied Basic Research Foundation
Beijing Nova Program
National Natural Science Foundation of China
Science and Technology Planning Project of Key Laboratory of Advanced IntelliSense Technology, Guangdong Science and Technology Department
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Moving Target Shadow Detection Method Based on Improved ViBe in VideoSAR Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024