An Improved NLCS Algorithm Based on Series Reversion and Elliptical Model Using Geosynchronous Spaceborne–Airborne UHF UWB Bistatic SAR for Oceanic Scene Imaging

Author:

Hu Xiao1,Xie Hongtu1,Yi Shiliang1,Zhang Lin2,Lu Zheng3

Affiliation:

1. School of Electronics and Communication Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China

2. Department of Early Warning Technology, Air Force Early Warning Academy, Wuhan 430019, China

3. Institute of Remote Sensing Satellite, China Academy of Space Technology, Beijing 100094, China

Abstract

Geosynchronous spaceborne–airborne (GEO-SA) ultra-high-frequency ultra-wideband bistatic synthetic aperture radar (UHF UWB BiSAR) provides high-precision images for marine and polar environments, which are pivotal in glacier monitoring and sea ice thickness measurement for polar ocean mapping and navigation. Contrasting with traditional high-frequency BiSAR, it faces unique challenges, such as the considerable spatial variability, significant range–azimuth coupling, and vast volumes of echo data, which impede high-resolution image reconstruction. This paper presents an improved bistatic nonlinear chirp scaling (NLCS) algorithm for imaging oceanic scenes with GEO-SA UHF UWB BiSAR. This methodology extends the two-dimensional (2-D) spectrum up to the sixth order via the method of series reversion (MSR) to meet accuracy demands and then employs an elliptical model to elucidate the alterations in the azimuth frequency modulation (FM) rate mismatch. Initially, the imaging geometry and signal model are introduced, and then a separation of bistatic slant ranges based on the configuration is proposed. In addition, during range processing, after eliminating linear range cell migration (RCM), the derivation process for the sixth-order 2-D spectrum is detailed and an improved filter is applied to correct the high-order RCM. Finally, during azimuth processing, the causes of the FM rate mismatch are analyzed, a cubic perturbation function derived from the elliptical model is used for FM rate equalization, and a unified sixth-order filter is applied to complete the azimuth compression. Experimental results with point targets and natural oceanic scenes validate the outstanding efficacy of the proposed NLCS algorithm, particularly in imaging quality enhancements for GEO-SA UHF UWB BiSAR.

Funder

Shenzhen Science and Technology Program

Guangdong Basic and Applied Basic Research Foundation

Beijing Nova Program

National Natural Science Foundation of China

Science and Technology Planning Project of Key Laboratory of Advanced IntelliSense Technology, Guangdong Science and Technology Department

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moving Target Shadow Detection Method Based on Improved ViBe in VideoSAR Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3