Effect of COVID-19 Lockdown on Urban Heat Island Dynamics in Prague, Czechia

Author:

Dogan Tugba1ORCID,Urban Aleš12,Hanel Martin1ORCID

Affiliation:

1. Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha-Suchdol, 165 00 Prague, Czech Republic

2. Institute of Atmospheric Physics, Czech Academy of Sciences, Praha 4, 141 00 Prague, Czech Republic

Abstract

Urban heat islands (UHI) are a well-known phenomenon adversely affecting human health and urban environments. The worldwide COVID-19 lockdown in 2020 provided a unique opportunity to investigate the effects of decreased emission of air pollution and anthropogenic heat flux (AHF) on UHI. Although studies have suggested that reduced AHF during lockdown decreased atmospheric UHI (AUHI) and surface UHI (SUHI), these results contain inherent uncertainties due to unaccounted weather variability and urban-rural dynamics. Our study comprehensively analyzes the impact of the COVID-19 lockdown on AUHI and SUHI in Prague, Czechia. By selecting days with similar weather conditions, we examined changes in mean SUHI using MODIS satellite images and in AUHI based on air temperature from Prague weather stations for the Lockdown period during March–April 2020 versus a Reference period from March–April 2017–2019. Our results show that, in comparison to the Reference period, the Lockdown period was associated with a 15% (0.1 °C) reduction of SUHI in urbanized areas of Prague and a 0.7 °C decline in AUHI in the city center. Additionally, the observed decreases in satellite-based aerosol optical depth and nitrogen dioxide by 12% and 29%, respectively, support our hypothesis that the weakened UHI effects were linked to reduction in anthropogenic activities during the lockdown. Revealing the largest decrease of mean SUHI magnitude around the periphery of Prague, which has predominantly rural land cover, our study emphasizes the need to consider the effects of urban-rural dynamics when attributing changes in SUHI to AHF. Our findings provide additional insights into the role of reduced anthropogenic activities in UHI dynamics during the COVID-19 lockdown and offer policymakers a comprehensive understanding of how the complex interaction between urban and rural microclimate dynamics influences the SUHI phenomenon.

Funder

IGA Faculty of Environmental Sciences CZU Prague

Czech Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3