Measurement of Downwelling Radiance Using a Low-Cost Compact Fourier-Transform Infrared System for Monitoring Atmospheric Conditions

Author:

Choi Haklim1ORCID,Seo Jongjin23

Affiliation:

1. Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea

2. Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA

3. Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

Temperature and water vapor play crucial roles in the Earth’s climate system, and it is important to understand and monitor the variation in the thermodynamic profile within the lower troposphere. Among various observation platforms for understanding the vertical structure of temperature and humidity, ground-based Fourier-transform infrared (FTIR) can provide detailed information about the lower troposphere by complementing the limitations of radiosonde or satellite methods. However, these ground-based systems have limitations in terms of cost, operation, and mobility. Herein, we introduce a cost-effective and easily deployable FTIR observation system designed to enhance monitoring capabilities for atmospheric conditions. The atmospheric downwelling radiance spectrum of sky is measured by applying a real-time radiative calibration using a blackbody. From the observed radiance spectrum, the thermodynamic profile (temperature and the water vapor mixing ratio) of the lower troposphere was retrieved using an algorithm based on the optimal estimation method (OEM). The retrieved vertical structure results in the lower troposphere were similar to the fifth-generation reanalysis database (ERA-5) of the European Center for Medium-range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction final analysis (NCEP FNL). This provides a potential possibility for monitoring atmospheric conditions by a compact FTIR system.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3