Public Perception of Autonomous Mobility Using ML-Based Sentiment Analysis over Social Media Data

Author:

Bakalos Nikolaos,Papadakis Nikolaos,Litke Antonios

Abstract

The purpose of this article is to present a framework for capturing and analyzing social media posts using a sentiment analysis tool to determine the views of the general public towards autonomous mobility. The paper presents the systems used and the results of this analysis, which was performed on social media posts from Twitter and Reddit. To achieve this, a specialized lexicon of terms was used to query social media content from the dedicated application programming interfaces (APIs) that the aforementioned social media platforms provide. The captured posts were then analyzed using a sentiment analysis framework, developed using state-of-the-art deep machine learning (ML) models. This framework provides labeling for the captured posts based on their content (i.e., classifies them as positive or negative opinions). The results of this classification were used to identify fears and autonomous mobility aspects that affect negative opinions. This method can provide a more realistic view of the general public’s perception of automated mobility, as it has the ability to analyze thousands of opinions and encapsulate the users’ opinion in a semi-automated way.

Funder

H2020 Societal Challenges

Publisher

MDPI AG

Subject

General Engineering

Reference26 articles.

1. Introducing autonomous vehicles in logistics: A review from a broad perspective;Van Meldert,2016

2. Why Things (Sometimes) Go Wrong in Focus Groups

3. Planning and Recruiting the Sample for Focus Groups and In-Depth Interviews

4. Social Media Mining: An Introduction;Zafarani,2014

5. September. Expectation and experience: Passenger acceptance of autonomous public transportation vehicles;Eden,2017

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3