Empirical Overview of Benchmark Datasets for Geomagnetic Field-Based Indoor Positioning

Author:

Ashraf ImranORCID,Din SadiaORCID,Hur Soojung,Kim GunzungORCID,Park Yongwan

Abstract

Indoor positioning and localization have been regarded as some of the most widely researched areas during the last decade. The wide proliferation of smartphones and the availability of fast-speed internet have initiated several location-based services. Concerning the importance of precise location information, many sensors are embedded into modern smartphones. Besides Wi-Fi positioning, a rich variety of technologies have been introduced or adopted for indoor positioning such as ultrawideband, infrared, radio frequency identification, Bluetooth beacons, pedestrian dead reckoning, and magnetic field, etc. However, special emphasis is put on infrastructureless approaches like Wi-Fi and magnetic field-based positioning, as they do not require additional infrastructure. Magnetic field positioning is an attractive solution for indoors; yet lack of public benchmarks and selection of suitable benchmarks are among the big challenges. While several benchmarks have been introduced over time, the selection criteria of a benchmark are not properly defined, which leads to positioning results that lack generalization. This study aims at analyzing various public benchmarks for magnetic field positioning and highlights their pros and cons for evaluation positioning algorithms. The concept of DUST (device, user, space, time) and DOWTS (dynamicity, orientation, walk, trajectory, and sensor fusion) is introduced which divides the characteristics of the magnetic field dataset into basic and advanced groups and discusses the publicly available datasets accordingly.

Funder

MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

1. How Many People Have Smartphones in 2020?https://www.oberlo.com/statistics/how-many-people-have-smartphones#:~:text=In%202020%2C%20the%20number%20of,rate%20is%20at%2045.4%20percent

2. Advanced Location-Based Technologies and Services;Karimi,2016

3. What Are Conumsers Doing on Their Smartphones Anywayhttps://www.salesforce.com/blog/2018/02/consumer-smartphone-use.html

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3