High-Sensitivity Raman Gas Probe for In Situ Multi-Component Gas Detection

Author:

Guo Jinjia,Luo Zhao,Liu Qingsheng,Yang Dewang,Dong Hui,Huang Shuke,Kong Andong,Wu Lulu

Abstract

Multiple reflection has been proven to be an effective method to enhance the gas detection sensitivity of Raman spectroscopy, while Raman gas probes based on the multiple reflection principle have been rarely reported on. In this paper, a multi-reflection, cavity enhanced Raman spectroscopy (CERS) probe was developed and used for in situ multi-component gas detection. Owing to signal transmission through optical fibers and the miniaturization of multi-reflection cavity, the CERS probe exhibited the advantages of in situ detection and higher detection sensitivity. Compared with the conventional, backscattering Raman layout, the CERS probe showed a better performance for the detection of weak signals with a relatively lower background. According to the 3σ criteria, the detection limits of this CERS probe for methane, hydrogen, carbon dioxide and water vapor are calculated to be 44.5 ppm, 192.9 ppm, 317.5 ppm and 0.67%, respectively. The results presented the development of this CERS probe as having great potential to provide a new method for industrial, multi-component online gas detection.

Funder

Natural Science Foundation of Shandong Province

Youth Scientific Research Foundation of Shandong Academy of Sciences

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3