Abstract
The properties of multi-wall carbon nanotubes decorated with iridium oxide nanoparticles (IrOx-MWCNTs) are studied to detect harmful gases such as nitrogen dioxide and ammonia. IrOx nanoparticles were synthetized using a two-step method, based on a hydrolysis and acid condensation growth mechanism. The metal oxide nanoparticles obtained were employed for decorating the sidewalls of carbon nanotubes. Iridium-oxide nanoparticle decorated carbon nanotube material showed higher and more stable responses towards NH3 and NO2 than bare carbon nanotubes under different experimental conditions, establishing the optimal operating temperatures and estimating the limits of detection and quantification. Furthermore, the nanomaterials employed were studied using different morphological and compositional characterization techniques and a gas sensing mechanism is proposed.
Funder
Ministerio de Economía y Competitividad
Agència de Gestió d’Ajuts Universitaris i de Recerca
European Cooperation in Science and Technology
Fonds De La Recherche Scientifique - FNRS
Institució Catalana de Recerca i Estudis Avançats
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献