Multi-Objective Optimization Based on Simulation Integrated Pareto Analysis to Achieve Low-Carbon and Economical Operation of a Wastewater Treatment Plant

Author:

Liao Jianbo1,Li Shuang1,Liu Yihong1,Mao Siyuan1,Tian Tuo2,Ma Xueyan2,Li Bing1,Qiu Yong2ORCID

Affiliation:

1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

Abstract

It is essential to reduce carbon emissions in wastewater treatment plants (WWTPs) to achieve carbon neutrality in society. However, current optimization of WWTPs prioritizes the operation cost index (OCI) and effluent quality index (EQI) over greenhouse gas (GHG) emissions. This study aims to conduct a multi-objective optimization of a WWTP, considering GHG emissions, EQI, and OCI. The anaerobic-anoxic-oxic integrated membrane bioreactor (AAO-MBR) process in an actual WWTP was selected as a typical case, tens of thousands of scenarios with combinations of six operational parameters (dissolved oxygen (DO), external carbon resource (ECR), poly aluminum chloride (PAC), internal reflux ratio (IRR), external reflux ratio (ERR), and sludge discharge (SD)) were simulated by GPS-X software (Hydromantics 8.0.1). It was shown that ECR has the greatest impact on optimization objectives. In the optimal scenario, the main parameters of ATDO, MTDO, IRR, and ERR were 0.1 mg/L, 4 mg/L, 50%, and 100%, respectively. The EQI, OCI, and GHG of the best scenario were 0.046 kg/m3, 0.27 ¥/m3, and 0.51 kgCO2/m3, which were 2.1%, 72.2%, and 34.6% better than the current situation of the case WWTP, respectively. This study provides an effective method for realizing low-carbon and economical operation of WWTPs.

Funder

National Key Research and Development Program of China

Tsinghua-Toyota Joint Research Institute Inter-Disciplinary Program

Tsinghua University INDITEX Sustainable Development Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3