Wireless Signal Propagation Prediction Based on Computer Vision Sensing Technology for Forestry Security Monitoring

Author:

He Jialuan,Xing Zirui,Xiang TianqiORCID,Zhang XinORCID,Zhou Yinghai,Xi Chuanyu,Lu Hai

Abstract

In this paper, Computer Vision (CV) sensing technology based on Convolutional Neural Network (CNN) is introduced to process topographic maps for predicting wireless signal propagation models, which are applied in the field of forestry security monitoring. In this way, the terrain-related radio propagation characteristic including diffraction loss and shadow fading correlation distance can be predicted or extracted accurately and efficiently. Two data sets are generated for the two prediction tasks, respectively, and are used to train the CNN. To enhance the efficiency for the CNN to predict diffraction losses, multiple output values for different locations on the map are obtained in parallel by the CNN to greatly boost the calculation speed. The proposed scheme achieved a good performance in terms of prediction accuracy and efficiency. For the diffraction loss prediction task, 50% of the normalized prediction error was less than 0.518%, and 95% of the normalized prediction error was less than 8.238%. For the correlation distance extraction task, 50% of the normalized prediction error was less than 1.747%, and 95% of the normalized prediction error was less than 6.423%. Moreover, diffraction losses at 100 positions were predicted simultaneously in one run of CNN under the settings in this paper, for which the processing time of one map is about 6.28 ms, and the average processing time of one location point can be as low as 62.8 us. This paper shows that our proposed CV sensing technology is more efficient in processing geographic information in the target area. Combining a convolutional neural network to realize the close coupling of a prediction model and geographic information, it improves the efficiency and accuracy of prediction.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Cyberspace Security Data Based on the Markov Chain Model;Applied Mathematics and Nonlinear Sciences;2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3