Copper-Plated Nanoporous Anodized Aluminum Oxide for Solar Desalination: An Experimental Study

Author:

Kaviti Ajay Kumar12,Kumar Yerolla Pavan12,Sikarwar Vineet Singh34ORCID

Affiliation:

1. Centre for Solar Energy Materials, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering &Technology (VNRVJIET), Hyderabad 500090, India

2. Department of Mechanical Engineering, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering &Technology (VNRVJIET), Hyderabad 500090, India

3. Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 1782/3, 182 00 Prague, Czech Republic

4. Department of Power Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic

Abstract

Currently, there is a shortage of potable water in several regions. Various alternative methods exist for producing purified water; however, one particular technology known as solar desalination is gaining prominence as a sustainable and environmentally friendly solution. Solar desalination harnesses solar energy to produce fresh water in regions with abundant sunlight. This study involved the fabrication of a nanostructured porous material composed of copper using anodization, followed by copper electroplating. In order to create three distinct nanoporous structures, we utilized three anodization periods of 40 min, 60 min, and 80 min. Subsequently, these structures underwent a copper deposition process for 30 min using the copper electroplating technique. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDAX), and X-ray diffraction (XRD) techniques were utilized to analyze the characteristics of the copper-plated nanoporous structure. Three distinct samples were utilized in solar desalination experiments, employing solar stills over a span of three consecutive days, with each sample being tested on a separate day. All three samples underwent desalination, unlike the standard solar still, which did not include any sample. Our observation revealed that the sample, which underwent 60 min of anodization followed by copper electroplating, had a significantly greater evaporation rate of 22.22% compared to the conventional still.

Funder

Department of Science & Technology, Government of India

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3