SMIFormer: Learning Spatial Feature Representation for 3D Object Detection from 4D Imaging Radar via Multi-View Interactive Transformers

Author:

Shi Weigang1,Zhu Ziming2ORCID,Zhang Kezhi2,Chen Huanlei3,Yu Zhuoping1,Zhu Yu2ORCID

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

2. School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

3. Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, China

Abstract

4D millimeter wave (mmWave) imaging radar is a new type of vehicle sensor technology that is critical to autonomous driving systems due to its lower cost and robustness in complex weather. However, the sparseness and noise of point clouds are still the main problems restricting the practical application of 4D imaging radar. In this paper, we introduce SMIFormer, a multi-view feature fusion network framework based on 4D radar single-modal input. SMIFormer decouples the 3D point cloud scene into 3 independent but interrelated perspectives, including bird’s-eye view (BEV), front view (FV), and side view (SV), thereby better modeling the entire 3D scene and overcoming the shortcomings of insufficient feature representation capabilities under single-view built from extremely sparse point clouds. For multi-view features, we proposed multi-view feature interaction (MVI) to exploit the inner relationship between different views by integrating features from intra-view interaction and cross-view interaction. We evaluated the proposed SMIFormer on the View-of-Delft (VoD) dataset. The mAP of our method reached 48.77 and 71.13 in the fully annotated area and the driving corridor area, respectively. This shows that 4D radar has great development potential in the field of 3D object detection.

Funder

Shanghai Automotive Industry Science and Technology Development Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3