Performing an Indirect Coupled Numerical Simulation for Capacitor Discharge Welding of Aluminium Components

Author:

Koal JohannesORCID,Baumgarten MartinORCID,Heilmann StefanORCID,Zschetzsche Jörg,Füssel Uwe

Abstract

Capacitor discharge welding (CDW) for projection welding provides very high current pulses in extremely short welding times. This requires a quick follow up behaviour of the electrodes during the softening of the projection. The possibilities of experimental process investigations are strongly limited because of the covered contact zone and short process times. The Finite Element Method (FEM) allows highly resoluted analyses in time and space and is therefore a suitable tool for process characterization and optimization. To utilize this mean of optimization, an indirect multiphysical numerical model has been developed in Ansys Mechanical APDL. This model couples the physical environments of thermal–electric with structural analysis. It can master the complexity of large deformations, short current rise times and high temperature gradients. A typical ring projection has been chosen as the joining task. The selected aluminium alloys are EN-AW-6082 (ring projection) and EN-AW-5083 (sheet metal). This paper presents the investigated material data, the model design and the methodology for an indirect coupling of the thermal–electric with the structural physic. The electrical contact resistance is adapted to the measured voltage in the experiment. The limits of the model in Ansys Mechanical APDL are due to large mesh deformation and decreasing element stiffness. Further modelling possibilities, which can handle the limits, are described.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3