Pressurized Liquid Extraction of Cannabinoids from Hemp Processing Residues: Evaluation of the Influencing Variables

Author:

Serna-Loaiza SebastiánORCID,Adamcyk Johannes,Beisl StefanORCID,Kornpointner Christoph,Halbwirth Heidi,Friedl AntonORCID

Abstract

Cannabinoids have gained significant interest as they may have pharmaceutical and nutritional applications to treat various diseases (sclerosis, glaucoma, and epilepsy, among others). Hemp (Cannabis sativa L.) has been studied recently as a source of cannabinoids, given the low concentration of tetrahydrocannabinol and comparatively high concentration of cannabidiol. Most of the plant’s fractions are used (blossoms, stem, and seeds), but the processing of the blossom leaves a residue, threshing residues, which could still be used to extract cannabinoids, aiming for an integral usage of the plant. Different technologies have been applied for cannabinoid extraction. Among these, pressurized liquid extraction (PLE) stands out due to the ease of application and efficiency. This work evaluates the influence of temperature, pressure, extraction time, and the number of cycles for the PLE of cannabinoids from hemp threshing residues using ethanol. Results show that low pressures, 100 °C, and 60 min are sufficient to achieve extraction yields of 19.8 mg of cannabidiol per g of dry hemp, which corresponds to an extraction efficiency of 99.3%. These results show this technology’s potential for cannabinoid extraction (mainly cannabidiol) and further open the perspective to valorize the residues and other parts of hemp plants.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3