Patchy Fires Promote Regeneration of Longleaf Pine (Pinus palustris Mill.) in Pine Savannas

Author:

Robertson Kevin M.,Platt William J.ORCID,Faires Charles E.

Abstract

Research Highlights: Spatial patterns of fire spread and severity influence survival of juvenile pines in longleaf pine savannas. Small areas that do not burn during frequent fires facilitate formation of patches of even-aged longleaf pine juveniles. These regeneration patches are especially associated with inner portions of openings (gaps) and where canopy trees have died in recent decades. Patterns of prescribed fire can thus have an important influence on stand dynamics of the dominant tree in pine savannas. Background and Objectives: Savannas are characterized by bottlenecks to tree regeneration. In pine savannas, longleaf pine is noted for recruitment in discrete clusters located within gaps away from canopy trees. Various mechanisms promoting this pattern have been hypothesized: light limitations, soil moisture, soil nutrients, pine needle mulching, competition with canopy tree roots, and fire severity associated with pine needle litter. We tested the hypothesis that regeneration patches are associated with areas that remain unburned during some prescribed fires, as mediated by gaps in the canopy, especially inner portions of gaps, and areas re-opened by death of canopy trees. Materials and Methods: We mapped areas that were unburned during prescribed fires applied at 1–2 year intervals from 2005–2018 in an old-growth pine savanna in Georgia, USA. We compared the maps to locations of longleaf pine juveniles (<1.5 m height) measured in 2018 and canopy cover and canopy tree deaths using a long-term (40 year) tree census. Results: Logistic regression analysis showed juveniles to be associated with unburned areas, gaps, inner gaps, and areas where canopy trees died. Conclusions: Patterns of fire spread and severity limit survival of longleaf pine juveniles to patches away from canopy trees, especially where canopy trees have died in recent decades. These processes contribute to a buffering mechanism that maintains the savanna structure and prevents transition to closed canopy forest or open grassland communities.

Publisher

MDPI AG

Subject

Forestry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3