Fast-Convergence Reinforcement Learning for Routing in LEO Satellite Networks

Author:

Ding Zhaolong12,Liu Huijie2,Tian Feng2,Yang Zijian2ORCID,Wang Nan1

Affiliation:

1. School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

2. Innovation Academy for Microsatellites of CAS, Shanghai 201304, China

Abstract

Fast convergence routing is a critical issue for Low Earth Orbit (LEO) constellation networks because these networks have dynamic topology changes, and transmission requirements can vary over time. However, most of the previous research has focused on the Open Shortest Path First (OSPF) routing algorithm, which is not well-suited to handle the frequent changes in the link state of the LEO satellite network. In this regard, we propose a Fast-Convergence Reinforcement Learning Satellite Routing Algorithm (FRL–SR) for LEO satellite networks, where the satellite can quickly obtain the network link status and adjust its routing strategy accordingly. In FRL–SR, each satellite node is considered an agent, and the agent selects the appropriate port for packet forwarding based on its routing policy. Whenever the satellite network state changes, the agent sends “hello” packets to the neighboring nodes to update their routing policy. Compared to traditional reinforcement learning algorithms, FRL–SR can perceive network information faster and converge faster. Additionally, FRL–SR can mask the dynamics of the satellite network topology and adaptively adjust the forwarding strategy based on the link state. The experimental results demonstrate that the proposed FRL–SR algorithm outperforms the Dijkstra algorithm in the performance of average delay, packet arriving ratio, and network load balance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability Study of Leo Satellite Networks Based on Random Linear Network Coding;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

2. Enhanced A-Star Algorithm for Service Oriented LEO Networks;2023 IEEE Future Networks World Forum (FNWF);2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3