Research and Implementation of Scheduling Strategy in Kubernetes for Computer Science Laboratory in Universities

Author:

Wang Zhe,Liu Hao,Han Laipeng,Huang Lan,Wang KangpingORCID

Abstract

How to design efficient scheduling strategy for different environments is a hot topic in cloud computing. In the private cloud of computer science labs in universities, there are several kinds of tasks with different resource requirements, constraints, and lifecycles such as IT infrastructure tasks, course design tasks submitted by undergraduate students, deep learning tasks and and so forth. Taking the actual needs of our laboratory as an instance, these tasks are analyzed, and scheduled respectively by different scheduling strategies. The Batch Scheduler is designed to process tasks in rush time to improve system throughput. Dynamic scheduling algorithm is proposed to tackle long-term lifecycle tasks such as deep learning tasks which are hungry for GPU resources and have dynamically changing priorities. Experiments show that the scheduling strategies proposed in this paper improve resource utilization and efficiency.

Publisher

MDPI AG

Subject

Information Systems

Reference27 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Container Elastic Autoscaling Strategy Based Adaptive Integrated Resource Forecast;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

2. Factors Influencing the Driving Force of Innovative Talents and the Optimization Matching of Talent Policies in Zhanjiang City;Academic Journal of Management and Social Sciences;2023-08-30

3. Delay-Aware Container Scheduling in Kubernetes;IEEE Internet of Things Journal;2023-07-01

4. LSTM Based Container Scheduling In Kubernetes;2023 IEEE International Conference on Contemporary Computing and Communications (InC4);2023-04-21

5. A heuristic multi-objective task scheduling framework for container-based clouds via actor-critic reinforcement learning;Neural Computing and Applications;2023-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3