Abstract
This article numerically analyzes the distribution of the zeros of Riemann’s zeta function along the critical line (CL). The zeros are distributed according to a hierarchical two-layered model, one deterministic, the other stochastic. Following a complex plane anamorphosis involving the Lambert function, the distribution of zeros along the transformed CL follows the realization of a stochastic process of regularly spaced independent Gaussian random variables, each linked to a zero. The value of the standard deviation allows the possible overlapping of adjacent realizations of the random variables, over a narrow confidence interval. The hierarchical model splits the ζ function into sequential equivalence classes, with the range of probability densities of realizations coinciding with the spectrum of behavioral styles of the classes. The model aims to express, on the CL, the coordinates of the alternating cancellations of the real and imaginary parts of the ζ function, to dissect the formula for the number of zeros below a threshold, to estimate the statistical laws of two consecutive zeros, of function maxima and moments. This also helps explain the absence of multiple roots.
Reference35 articles.
1. Über die Anzahl der Primzahlen unter Einer Gegebenen Größe;Riemann;Ges. Math. Werke und Wissenschaftlicher Nachlaß,1859
2. Observationes Variae in Mathesin Puram;Lambert;Acta Helv. Phys. Math. Anat. Bot. Med.,1758
3. Sur les zéros de la fonction ζ(s) de Riemann;Hadamard;Comptes Rendus de l’Académie Sci. Paris,1896
4. Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée;De la Vallée Poussin;Sci. Lett. Beaux-Arts Belg.,1899
5. Note sur les zéros de la fonction ζ(s) de Riemann
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献