Multi-Hole Drilling Tool Path Planning and Cost Management through Hybrid SFLA-ACO Algorithm for Composites and Hybrid Materials

Author:

Mehmood Nasir,Umer Muhammad,Asgher UmerORCID

Abstract

In the process of drilling multiple holes in composites and hybrid materials, almost 70% of the time is consumed in tool traveling and tool changing. Recently, researchers have focused on this consumption of time for optimization of the tool path. A literature review revealed the following research gap: little work has been performed on the hybridization of metaheuristics. In the present study, the hybridization of SFLA and ACO metaheuristic algorithms is carried out, which is based on this research gap. The hybridization of SFLA and ACO metaheuristic algorithms provides originality and novelty in this study. The main objective of this study is to minimize the tool path in drilling problems. The proposed algorithm was applied to five benchmark multi-hole drilling problems and one industrial problem from the literature. The outcome of this work is evaluated with the results of dynamic programming (DP), ACO, an immune-based evolutionary approach (IA), and a modified SFLA for five benchmark problems. The accuracy of the results was improved by 2.27% using the proposed hybrid algorithm, indicating that the proposed algorithm is superior to DP, ACO, IA, and the modified SFLA. Additionally, the results of the proposed hybrid algorithm for an example industrial problem from the literature were compared with those of the SFLA and modified SFLA. The proposed algorithm reduced the total cost by 6.17% and 3.76% compared with the SFLA and modified SFLA, respectively. Thus, the efficacy of the proposed hybrid algorithm was confirmed, along with its applicability.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference25 articles.

1. World trends and prospects in manufacturing technology;Merchant;Int. J. Veh. Des.,1985

2. Optimum drilling path planning for a rectangular matrix of holes using ant colony optimisation;Abbas;Int. J. Prod. Res.,2011

3. Tool path optimization for computer numerical control machines based on parallel ACO;Eng. Lett.,2012

4. An ant colony system for routing in PCB holes drilling process;Saealal;Int. Symp. Innov. Manag. Inf. Prod.,2012

5. Route planning analysis in holes drilling process using magnetic optimization algorithm for electronic manufacturing sector;Ismail;World Appl. Sci. J.,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3