Abstract
Natural rubber (NR) composites filled with silica are typically used for tire tread applications owing to their low energy consumption and low rolling resistance. Tire tread properties vary broadly depending on the compound formulation and curing conditions. Silica loading is recognized as a critical factor influencing the mechanical properties of the composites. In this work, we aim to investigate the effect of silica loading (10–50 phr) on the mechanical properties of NR composites. Silica was prepared from rice husk waste via chemical treatment and subsequent calcination at 600 °C. Prior to the compound mixing process, silica was modified by a silane coupling agent to improve compatibility with the NR matrix. The NR compounds reinforced with silane-modified silica from rice husk were prepared using a two-roll mill machine. The scorch and cure times increased as the silica loading increased. The mechanical properties of the NR composites, including tensile strength, elongation at break, modulus, hardness, and abrasion loss, were examined as a function of silica loading. Tensile strength increased and reached the maximum value at 20 phr but decreased at high loading owing to the agglomeration of silica in the NR matrix. With increasing silica loading, hardness and modulus increased, whereas elongation at break and abrasion resistance decreased slightly. These results indicate that NR composites filled with silica are stiffer and harder at a higher silica loading due to the strong interaction between silica and the NR matrix, inhibiting the segmental mobility of rubber chains. We anticipate that the compound formulation presented in this work could potentially be adapted to tire tread applications.
Funder
National Research Council of Thailand
Kasetsart University Research and Development Institute
Subject
Engineering (miscellaneous),Ceramics and Composites
Reference53 articles.
1. Bijina, V., Jandas, P.J., Joseph, S., Gopu, J., Abhitha, K., and John, H. (2022). Recent trends in industrial and academic developments of green tyre technology. Polym. Bull.
2. Noh, I., Hong, S., and Kim, J. (2022). Tensile test analysis of tire tread rubber’s tendency to resist cracks. Appl. Sci., 12.
3. The role of rubber rheology in tire tread extrusion: A review;Hopmann;High Temp. High Press.,2020
4. Review of factors controlling skid resistance at tire-pavement interface;Kumar;Adv. Civ. Eng.,2021
5. Determination of safe vehicle speeds on wet horizontal pavement curves;Peng;Road Mater. Pavement Des.,2021
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献