Effect of Annealing and Diameter on Tensile Property of Spinnable Carbon Nanotube and Unidirectional Carbon Nanotube Reinforced Epoxy Composite

Author:

Tokumitsu Naoki,Shimamura YoshinobuORCID,Fujii TomoyukiORCID,Inoue Yoku

Abstract

Carbon nanotubes (CNTs) are thought to have higher elastic modulus and strength than carbon fibers. The recent development of spinnable multi-walled carbon nanotubes (MWNTs) enables us to produce unidirectional MWNT reinforced polymer-based composites with a higher volume fraction of CNTs. The results of tensile tests of spinnable MWNTs in scanning electron microscopes show, however, that Young’s modulus and tensile strength of MWNTs are not as high as expected. Annealing and developing thinner spinnable MWNTs will be the solution to improving the tensile property. In this study, as-produced and annealed untwisted yarns composed of MWNTs with three different diameters were prepared, and the tensile properties of spinnable MWNTs were estimated from the tensile properties of the untwisted yarns to investigate the effect of annealing and diameter on the overall tensile property of MWNTs. Furthermore, tensile tests of unidirectional MWNT reinforced epoxy composites were conducted and the contribution of the tensile property of MWNTs to the bulk tensile property of the composite was discussed. As a result, it was found that MWNTs with thinner diameters had higher Young’s modulus and tensile strength and annealing improved Young’s modulus of MWNTs, in addition to that the bulk tensile property of unidirectional MWNT reinforced epoxy composites was primarily determined by the tensile property of MWNTs. The results support previous findings from a limited number of tensile tests in SEM/TEM, and also reveal the validity of estimating the tensile properties of individual CNTs by tensile testing of untwisted yarns. In addition, the discussion on composite materials suggests that the tensile property of composite materials can be enhanced by improving the tensile property of MWNTs.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3