Abstract
Cement is widely used for the solidification of low- and intermediate-level radioactive waste materials. Radioactive borate solution with a high concentration of boron is one of the main radioactive wastes produced in nuclear stations. It is difficult to solidify this solution by using cement because borate has a great inhibitory effect on the cement hydration process. In this study, the hydration kinetics, strength, durability, phase assemblage, and transportation and transformation of the silicon of the paste that blended Portland cement with 5 M borate solution were investigated. After the addition of sodium hydroxide and sodium metasilicate to the paste, the cement hydration process was restarted, and the 28-days strength of samples met the requirements of the Chinese standard. The mechanism of overcoming the retardation of cement hydration by the borate solution was attributed to the formation of calcium metaborate, ettringite, portlandite, and calcium silicate hydrate with the restarting of cement hydration, without the formation of ulexite.
Funder
National Natural Science Foundation of China
State Key Laboratory of Silicate Materials for Architectures
Shenzhen Science and Technology Plan Collaborative Innovation Project
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献