Author:
Li Mengfan,Wang Yanxiang,Cui Bowen,Wang Chengjuan,Tan Hongxue,Jiang Haotian,Xu Zhenhao,Wang Chengguo,Zhuang Guangshan
Abstract
Carbon fiber (CF) reinforced composites are widely used due to their excellent properties. However, the smooth surface and few functional groups of CFs can lead to fiber fractures and pullout, which reduce the service life of the composites. The overall performance of composites can be improved by growing carbon nanotubes (CNTs) on the CF surface. Before this, CF surface should be modified to enhance the loading amount of catalyst particles and thus make the CNTs more uniform. In this paper, CNTs were grown on a CF surface by one-step chemical vapor deposition to prepare multi-scale CNTs/CF reinforcements, and the effects of different methods on the CF surface modification were explored. After setting four intensities of electrochemical anodic oxidation, i.e., 50 C/g, 100 C/g, 150 C/g and 200 C/g, it was found that the distribution and quantity of CNTs were improved under both the 100 C/g and 150 C/g conditions. Considering the influence of electrical intensity on the (002) interplanar spacing of CFs, which affects the mechanical properties of the samples, 100 C/g was finally selected as the optimal electrochemical treatment intensity. This finding provides a reference for continuous and large-scale modification of CF surfaces to prepare CNTs/CF multi-scale reinforcements.
Funder
Natural Science Foundation in Shandong Province
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献