Study on Anhydrous Proton Conduction in Imidazole–Collagen Composite

Author:

Furuseki Tomoki,Teranishi Shotaro,Matsuo Yasumitsu

Abstract

Recently, hydrogen-fuel cells have attracted attention as an environmentally friendly next-generation energy device. Very recently, biomaterials such as collagen and chitin have realized proton conductivity via water bridges under humidity condition, and the fabrication of fuel cells using biomaterials is possible. However, the fuel cell electrolyte via water has demerits, such as the complication of fuel cell instruments and the operating temperature limit. Therefore, fuel cell electrolytes without humidified conditions are desired. In the present work, we have synthesized an anhydrous proton conductor using imidazole and collagen, which are biomaterials, and investigated the anhydrous proton conductivity in imidazole–collagen composites. It was found that an imidazole–collagen composite is a high-proton conductor above 10−3 S/m and above 200 °C without the humidified condition compared with other anhydrous bio-proton conductors such as the hydroxyapatite–collagen composite. Moreover, the motional narrowing of the 1H-NMR line width reveals that the proton conductivity is realized in the temperature region from 120 to 200 °C. In addition, the DTA measurement and the impedance analyses reveal that the imidazole–collagen composite film undergoes the phase transition at 120 °C. Furthermore, the proton conductivity in the imidazole–collagen composite strongly depends on n, which is the imidazole concentration per collagen molecule and takes a maximum at n = 2.0. In addition, the proton conductivity perpendicular to the collagen fiber is approximately ten times higher than that parallel to the collagen fiber. From these results, it can be deduced that the proton conductivity in the imidazole–collagen composite is caused by breaking and rearranging the hydrogen bonds of the collagen side chain with the imidazole molecule formed between the collagen fibers.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3