Cutting-Edge Green Polymer/Nanocarbon Nanocomposite for Supercapacitor—State-of-the-Art

Author:

Kausar AyeshaORCID,Ahmad Ishaq,Maaza Malik,Eisa M. H.,Bocchetta PatriziaORCID

Abstract

Supercapacitors have attained a special stance among energy storage devices such as capacitors, batteries, fuel cell, and so forth. In this state-of-the-art overview on green synthesis approaches and green materials for supercapacitors, the cutting-edge green polymer/nanocarbon nanocomposite systems were explored by focusing on the design and related essential features. In this regard, various polymers were reconnoitered including conjugated polymers, thermosetting matrices, and green-cellulose-based matrices. Nanocarbon nanomaterials have also expanded research thoughtfulness for green-technology-based energy storage devices. Consequently, green polymer/nanocarbon nanocomposites have publicized fine electron conduction pathways to promote the charge storage, specific capacitance, energy density, and other essential features of supercapacitors. Future research directions must focus on the design of novel high performance green nanocomposites for energy storage applications.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3