A Resource-Adaptive Routing Scheme with Wavelength Conflicts in Quantum Key Distribution Optical Networks

Author:

Zhao Tao1,Fan Xiaodong1,Dong Bowen1,Niu Quanhao1,Guo Banghong1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China

Abstract

Quantum key distribution (QKD) has great potential in ensuring data security. Deploying QKD-related devices in existing optical fiber networks is a cost-effective way to practically implement QKD. However, QKD optical networks (QKDON) have a low quantum key generation rate and limited wavelength channels for data transmission. The simultaneous arrival of multiple QKD services may also lead to wavelength conflicts in QKDON. Therefore, we propose a resource-adaptive routing scheme (RAWC) with wavelength conflicts to achieve load balancing and efficient utilization of network resources. Focusing on the impact of link load and resource competition, this scheme dynamically adjusts the link weights and introduces the wavelength conflict degree. Simulation results indicate that the RAWC algorithm is an effective approach to solving the wavelength conflict problem. Compared with the benchmark algorithms, the RAWC algorithm can improve service request success rate (SR) by up to 30%.

Funder

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Routing and Photon Source Provisioning in Quantum Key Distribution Networks;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

2. Detecting Attackers During Quantum key Distribution in IoT Networks using Quantum-Based Secure and Lightweight Transmission;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3