Effects of Variations in the Chemical Composition of Individual Rice Grains on the Eating Quality of Hybrid Indica Rice Based on Near-Infrared Spectroscopy

Author:

Cheng WeiminORCID,Xu ZhuopinORCID,Fan ShuangORCID,Zhang Pengfei,Xia Jiafa,Wang Hui,Ye Yafeng,Liu BinmeiORCID,Wang Qi,Wu Yuejin

Abstract

The chemical composition of individual hybrid rice (F2) varieties varies owing to genetic differences between parental lines, and the effects of these differences on eating quality are unclear. In this study, based on a self-developed near-infrared spectroscopy platform, we explored these effects among a set of 143 hybrid indica rice varieties with different eating qualities. The single-grain amylose content (SGAC) and single-grain protein content (SGPC) models were established with coefficients of determination (R2) of 0.9064 and 0.8847, respectively, and the dispersion indicators (standard deviation, variance, extreme deviation, quartile deviation, and coefficient of variation) were proposed to analyze the variations in the SGAC and SGPC based on the predicted results. Our correlation analysis found that the higher the variation in the SGAC and SGPC, the lower the eating quality of the hybrid indica rice. Moreover, the addition of the dispersion indicators of the SGAC and SGPC improved the R2 of the eating quality model constructed using the composition-related physicochemical indicators (amylose content, protein content, alkali-spreading value, and gel consistency) from 0.657 to 0.850. Therefore, this new method proved to be useful for identifying high-eating-quality hybrid indica rice based on single near-infrared spectroscopy prior to processing and cooking.

Funder

National Natural Science Foundation of China

Hefei Science and Technology Project

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3