Arabinoxylans Release from Brewers’ Spent Grain Using Extrusion and Solid-State Fermentation with Fusarium oxysporum and the Antioxidant Capacity of the Extracts

Author:

Cervantes-Ramirez Joel G.,Vasquez-Lara Francisco,Sanchez-Estrada AlbertoORCID,Troncoso-Rojas RosalbaORCID,Heredia-Olea Erick,Islas-Rubio Alma R.

Abstract

Brewers’ spent grain (BSG) is the most abundant byproduct generated from the beer-brewing process. BSG is a material rich in hemicellulose, composed of arabinoxylans (AX). However, the high crosslinking of this material causes low availability of AX, for which it is necessary to apply different treatments. The objective of this research is to increase the release of arabinoxylans through solid-state fermentation with Fusarium oxysporum f. sp. lycopersici using extruded brewery spent grain. First, the BSG is subjected to two types of physical treatments: extrusion at 20% moisture, 200 rpm and 50 °C (BSGe), and blade milling (BSGm). The chemical composition is determined for each sample (BSG, BSGe and BSGm). Subsequently, the solid-state fermentation process (SSF) is carried out on each sample. The fermentation kinetics at 30 °C are monitored for 7 days. Once the SSF concludes, AX are extracted, and the purity of AX is determined by the phloroglucinol colorimetric assay. Finally, the total phenolic compounds, phenolic acids and antioxidant capacity by DPPH are quantified. No significant differences (p ≥ 0.05) in the protein, lipid, ash or total dietary fiber contents are found among the samples. No significant difference (p ≥ 0.05) in the content of soluble fiber is found, although BSGe and BSGm have higher values than BSG. On the other hand, the yields of soluble AX exhibit significant differences (p ≤ 0.05) among nonfermented samples (BSG, 0.03%; BSGm, 0.53%; BSGe, 0.70%) and with SSF (BSG, 2.95%; BSGm, 6.24%; and BSGe, 9.58%). In addition, the contents of free phenolic compounds and free phenolic acids and the percent inhibition of free extracts by 2,2-diphenyl-1-picrylhydrazyl (DPPH) differ significantly (p ≤ 0.05) between samples subjected to SSF and nonfermented samples. Therefore, extrusion and SSF treatment increase AX release from BSG as well as the antioxidant capacity of the extracts.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3