Identification of Lipopeptide Iturin A Produced by Bacillus amyloliquefaciens NCPSJ7 and Its Antifungal Activities against Fusarium oxysporum f. sp. niveum

Author:

Wang JunhuaORCID,Qiu Jiying,Yang Xiaoyu,Yang Jinyu,Zhao Shuangzhi,Zhou Qingxin,Chen Leilei

Abstract

Bacillus amyloliquefaciens NCPSJ7 showed potential fungicidal activities for the effective control of fungal infection. From the PCR test, the key genes (srfAA, sfp, fenD, bmyB, ituD, and ituC) were detected in B. amyloliquefaciens NCPSJ7. These genes were closely related to the lipopeptides (LPs) synthesis. Next, three LPs families were identified with liquid chromatography–mass spectrometry (LC/MS), including iturin A, fengycin A, and surfactin. After purification with C18, the main active antifungal compound was proven to be C14-iturin A by ESI-HRMS, which has significant activities against fungi. These results proved that C14-iturin A played an important role in inhibiting the growth of fungi for B. amyloliquefaciens NCPSJ7. Furthermore, the isolated LP could inhibit mycelial growth and conidia germination at 30 μg/mL. SEM allowed us to observe that mycelial morphology and conidia germination were also affected. The mycelial ultrastructure TEM observations showed that the external electron-dense outer layer cell wall, which mainly consisted of glycoproteins, was affected. Furthermore, swollen mitochondria, enriched glycogen, and increased vacuoles were also found. LP also affected the intact wall and membranes, leading to their increased permeability, which was proved by propidium iodide (PI) staining and conductivity measurements. Meanwhile, the ergosterol, which has an affinity for iturin A, also increased. These results indicated that LP caused fungal dysfunction and membrane permeability increase, leading to fungal inhibition. Identifying and studying LPs is important in exploring the fungicidal activities of B. amyloliquefaciens, which promotes the use of B. amyloliquefaciens NCPSJ7 as a potential candidate for biocontrol.

Funder

Department of science and technology of shandong province

People's Government of Shandong Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3