Shelf-Life Prediction and Thermodynamic Properties of No Added Sugar Chocolate Spread Fortified with Multiple Micronutrients

Author:

Tolve RobertaORCID,Tchuenbou-Magaia Fideline LaureORCID,Sportiello Lucia,Bianchi FedericoORCID,Radecka IzaORCID,Favati FabioORCID

Abstract

The development of fortified healthy pleasant foods, in which saturated fats are replaced with unsaturated ones, poses a challenge for the food industry due to their susceptibility to oxidative rancidity, which decreases product shelf-life, causes the destruction of health-promoting molecules, and forms potentially toxic compounds. A comparative study applying the Arrhenius model was carried out to investigate the oxidative stability and predict the shelf-life of a newly developed no added sugar chocolate spread formulated with sunflower oil, and fortified with vitamin D, Mg, and Ca checked against two commercially available spreads: No Palm and a well-known commercially available product (RB). The results obtained from the accelerated shelf-life testing for peroxide value (PV) showed relatively higher activation energy (Ea, 14.48 kJ/mol K) for RB, whereas lower Ea (11.31–12.78 kJ/mol K) was obtained for No Palm and all the experimental spread chocolates. Q10 values were comparable (1.202–1.154), indicating a similar catalytic effect of the temperature upon the oxidation rate across all the investigated samples. The positive Gibbs free energies ranged from 75.014 to 83.550 kJ/mol and pointed out that the lipid oxidation reaction in the chocolate spread was an endergonic process. The predicted shelf-life at 293.15 K was 8.57 months (RB), 7 months (No Palm), and 6.8 months for all the experimental spreadable chocolate. However, the higher production of hydroperoxides was observed in chocolate fortified with magnesium-calcium carbonate nanoparticles and stored at 313.15 and 323.15 K, suggesting these particles may enhance lipid oxidation.

Funder

Regione Veneto FSE project

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3