Effect of Cationic Modified Microcrystalline Cellulose on the Emulsifying Properties and Water/Oil Interface Behavior of Soybean Protein Isolate

Author:

Guo YunsiORCID,Feng Sirui,Li Zhangpeng,Jiang Minghao,Xiao Zile,Chen Lichun,Zhang Yue

Abstract

Stabilizing emulsion using complex biopolymers is a common strategy. It would be very interesting to characterize the impact of charge density on the emulsifying properties of complex polyelectrolytes carrying opposite charges. In this study, cationic modified microcrystalline celluloses (CMCC) of different charge densities were prepared and mixed with soy protein isolate (SPI) for emulsion applications. CMCC-1 to 3 with various cationic charge values were successfully prepared as characterized by zeta-potential and FTIR. The positive charge density’s effects on solubility, thermogravimetric properties, and rheological properties were studied. Complexes of SPI-CMCC with various zeta-potential values were then obtained and used to stabilize soybean oil emulsions. The results show that emulsions stabilized by complexes of SPI and CMCC-3 at a ratio of 1:3 had the best emulsification ability and stability. However, the interfacial tension-reducing ability of complexes decreased continuously with increasing cationic charge value, while the rheological results show that complexes of SPI-CMCC-3 at a ratio of 1:3 formed a stronger viscoelastic network than other complexes. Our results indicate that this SPI-CMCC complex formula showed excellent emulsification performance, which could be adjusted and promoted by changing the charge density. This complex formula is promising for fabrication of emulsion-based food and cosmetic products.

Funder

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3