Separation of Dimethyl Sulfide from Wort by Multi-Layer Centrifugal Film Method

Author:

Dai Xiaoyong,Wang Pengyu,Wu Wei,Wang Haoyu,Xu Qing,Li Zhanyong

Abstract

Installing a separation device for undesirable volatile substances represented by dimethyl sulfide (DMS) in wort boiling systems is a common way to reduce the thermal stress and maintain the beer’s flavor stability (characterized by the thiobarbituric acid (TBA) value), but most of these separation devices need to provide additional vacuum or primary thermal energy. This research shows that it can produce self-evaporation that consumes its own sensible heat when wort is in the state of turbulent film. Therefore, a new gas-liquid separation system named the multilayer centrifugal film-forming device (similar to the spinning cone column (SCC)) is proposed, which can strengthen self-evaporation through wort turbulent film and create gas phase conditions for the separation of undesirable volatile substances. The results show that up to 91.6% of the content of DMS in wort could be significantly removed by centrifugal film self-evaporation. The TBA value of wort was reduced by more than 15%, and the wort was not found to be oxidized. Compared with the traditional boiling method, the multi-layer centrifugal film-forming device can significantly save primary energy consumption and reduce energy consumption by 216.4 kJ per liter of wort during the boiling and cooling process.

Funder

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3