A Minimally Invasive Approach for Preventing White Wine Protein Haze by Early Enzymatic Treatment

Author:

Benucci IlariaORCID,Lombardelli ClaudioORCID,Muganu Massimo,Mazzocchi Caterina,Esti MarcoORCID

Abstract

Protein stability in bottled white wine is an essential organoleptic property considered by consumers. In this paper, the effectiveness of an early enzymatic treatment was investigated by adding a food-grade microbial protease at two different stages of winemaking: (i) at cold settling, for a short-term and low temperature (10 °C) action prior to alcoholic fermentation (AF); (ii) at yeast inoculum, for a long-lasting and medium temperature (18 °C) action during AF. The results reveal that protease sufficiently preserved its catalytic activity at both operational conditions: 10 °C (during cold settling) and 18 °C (during AF). Furthermore, protease addition (dosage 50–150 μL/L) raised the alcoholic fermentation rate. The treatment at yeast inoculum (dosage 50 μL/L) had a remarkable effect in preventing haze formation, as revealed by its impact on protein instability and haze-active proteins. This minimally invasive, time and resource-saving enzymatic treatment, integrated into the winemaking process, could produce stable white wine without affecting color quality and phenol content.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3