Large Yellow Tea Extract Ameliorates Metabolic Syndrome by Suppressing Lipogenesis through SIRT6/SREBP1 Pathway and Modulating Microbiota in Leptin Receptor Knockout Rats

Author:

Wu GuohuoORCID,Sun Xiaoyun,Cheng Huijun,Xu Shan,Li Daxiang,Xie ZhongwenORCID

Abstract

Metabolic syndrome is a chronic metabolic disorder that has turned into a severe health problem worldwide. A previous study reported that large yellow tea exhibited better anti-diabetic and lipid-lowering effects than green tea. Nevertheless, the potential mechanisms are not yet understood. In this study, we examined the prevention effects and mechanisms of large yellow tea water extract (LWE) on metabolic syndrome using leptin receptor knockout (Lepr−/−) rats. Seven-week-old male Lepr−/− and wild type (WT) littermate rats were divided into Lepr−/− control group (KO) (n = 5), Lepr−/− with LWE-treated group (KL) (n = 5), WT control group (WT) (n = 6), and WT with LWE intervention group (WL) (n = 6). Then, the rats were administered water or LWE (700 mg/kg BW) daily by oral gavage for 24 weeks, respectively. The results showed that the administration of LWE significantly reduced the serum concentrations of random blood glucose, total cholesterol, triglyceride, and free fatty acids, and increased glucose tolerance in Lepr−/− rats. Moreover, LWE remarkably reduced hepatic lipid accumulation and alleviated fatty liver formation in Lepr−/− rats. A mechanistic study showed that LWE obviously activated SIRT6 and decreased the expression of key lipogenesis-related molecules SREBP1, FAS, and DGAT1 in the livers of Lepr−/− rats. Furthermore, LWE significantly improved microbiota dysbiosis via an increase in gut microbiota diversity and an abundance of the microbiota that produce short chain fatty acids (SCFAs), such as Ruminococcaceae, Faecalibaculum, Intestinimonas, and Alistipes. Finally, LWE supplementation increased the concentrations of SCFAs in the feces of Lepr−/− rats. These results revealed that LWE attenuated metabolic syndrome of Lepr−/− rats via the reduction of hepatic lipid synthesis through the SIRT6/SREBP1 pathway and the modulation of gut microbiota.

Funder

National Natural Science Foundation of China

University Synergy Innovation Program of Anhui Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3