Abstract
The Mediterranean diet has, among its cornerstones, the use of olive oil for its nutraceutical and organoleptic properties. Despite the numerous merits, olive-oil mill wastewater (OMWW), which is generated by the olive-oil extraction process, is one of the most serious environmental pollutants in the Mediterranean countries. The polluting potential of OMWW is due to its high content of tannins, polyphenols, polyalcohols, pectins and lipids. In order to close the recovery cycle of a fortified citrus olive oils previously developed, we tested the ability of five microalgae of the Chlorella group (SEC_LI_ChL_1, CL_Sc, CL_Ch, FB and Idr) in lowering the percentage of total phenolic compounds in vegetation water. This was obtained with three different extraction processes (conventional, and lemon and orange peels) at three concentrations each (10%, 25% and 50%). The results showed that strains Idr, FB and CL_Sc from the Lake Massaciuccoli can tolerate vegetation water from conventional and lemon peel extractions up to 25%; these strains can also reduce the phenolic compounds within the tests. The application of microalgae for OMWW treatment represents an interesting opportunity as well as an eco-friendly low-cost solution to be developed within companies as a full-scale approach, which could be applied to obtain a fortified microalgal biomass to be employed in nutraceutical fields.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献