Effect of Thermal Treatment on the Physicochemical, Ultrastructural, and Antioxidant Characteristics of Euryale ferox Seeds and Flour

Author:

Li Qin,Li Hong-Tao,Bai Yi-Peng,Zhu Ke-Rui,Huang Ping-HsiuORCID

Abstract

Euryale ferox seeds (EFS) were less gelatinized, preventing the release of nutrients and functional compounds, resulting in limited applications in meals and the food industry. Nutraceutical importance of EFS includes starch, protein, lipids, 20 amino acids, minerals, and vitamins (C, E, and beta carotene). This study aimed to evaluate the effect of three different thermal treatments on EFS’s physicochemical and nutritional properties and expected to improve its applicability. The results showed that the bulk density, thousand-grain weight, and hardness of thermal treated EFS were significantly decreased (p < 0.05), whereas the maximum decrease was observed in the industrial infrared heating-assisted fluidized bed (IHFH) treatment. Meanwhile, there were more crevices, fissures, and heightened porous structures in EFS between the pericarp and episperm and the endosperm after heat treatment, which facilitated grinding and water absorption. Notably, EFS’s water and oil absorption capacities increased significantly (p < 0.05) with microwave and IHFH treatments. EFS ground’s solubility into powder was increased significantly with thermal treatment (p < 0.05). Furthermore, the functional properties of TPC, TFC, DPPH radical scavenging activity, and reducing power were significantly increased (p < 0.05). In general, the changes in the physicochemical properties of EFS and increased bioactivity were caused by microwave and IHFH treatments. Hence, it might improve the food value of EFS while providing valuable information to researchers and food manufacturers.

Funder

High-end training project for teacher professional leaders in higher vocational colleges in Jiangsu province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3