Hemp Seed Fermented by Aspergillus oryzae Attenuates Lipopolysaccharide-Stimulated Inflammatory Responses in N9 Microglial Cells

Author:

Wang Zeyuan,Wu LehaoORCID,Fu Dongmei,Zhang Yan,Zhang Chunzhi

Abstract

The objective of our present work was to explore the possible enhanced anti-neuroinflammatory ability of Aspergillus oryzae fermented hemp seed in lipopolysaccharide (LPS)-stimulated N9 microglial cells and elucidate its underlying mechanism. The water extract of hemp seed was fermented by Aspergillus oryzae. LPS-stimulated N9 microglial cells were employed for the inflammatory cell model. The release of nitric oxide (NO) was determined by Griess assay. The cytokines and inflammatory mediator expression were measured by qPCR and ELISA. The phosphorylated key signaling proteins, including nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphatidylinositol 3-kinase (PI3K/Akt), were quantified by western blot analysis. The production of intracellular reactive oxygen species (ROS) was measured by DCFH oxidation. Fermented hemp seed (FHS) reduced NO production by downregulating inducible nitric oxide synthase (iNOS) expression in LPS-stimulated N9 microglial cells. FHS treatment decreased LPS-stimulated expression of inflammatory cytokines either on mRNA or protein levels. Moreover, FHS inhibited LPS-stimulated phosphorylation of NF-κB, MAPKs, and PI3K/Akt signaling pathways. Furthermore, FHS significantly reduced the ROS production in the cells. It was concluded that FHS exerted its anti-neuroinflammatory activities by suppressing ROS production, thus inhibiting NF-κB, MAPKs, and PI3K/Akt activation, consequently decreasing the expression levels of inflammatory mediators and cytokines.

Funder

Educational Department of Liaoning Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3