Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning

Author:

Ye Weixin,Yan TianyingORCID,Zhang ChuORCID,Duan Long,Chen Wei,Song Hao,Zhang Yifan,Xu Wei,Gao PanORCID

Abstract

Rapid and accurate detection of pesticide residue levels can help to prevent the harm of pesticide residue. This study used visible/near-infrared (Vis-NIR) (376–1044 nm) and near-infrared (NIR) (915–1699 nm) hyperspectral imaging systems (HISs) to detect the level of pesticide residues. Three different varieties of grapes were sprayed with four levels of pesticides. Logistic regression (LR), support vector machine (SVM), random forest (RF), convolutional neural network (CNN), and residual neural network (ResNet) models were used to build classification models for pesticide residue levels. The saliency maps of CNN and ResNet were conducted to visualize the contribution of wavelengths. Overall, the results of NIR spectra performed better than those of Vis-NIR spectra. For Vis-NIR spectra, the best model was ResNet, with the accuracy of over 93%. For NIR spectra, LR was the best, with the accuracy of over 97%, but SVM, CNN, and ResNet also showed closed and fine results. The saliency map of CNN and ResNet presented similar and closed ranges of crucial wavelengths. Overall results indicated deep learning performed better than conventional machine learning. The study showed that the use of hyperspectral imaging technology combined with machine learning can effectively detect the level of pesticide residues in grapes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3