Effects of Cinnamon Essential Oil on Oxidative Damage and Outer Membrane Protein Genes of Salmonella enteritidis Cells

Author:

Zhang Zhen,Zhao Yuanyuan,Chen Xueqin,Li Wei,Li Wen,Du Jianming,Wang Li

Abstract

Salmonella is an important pathogen causing food poisoning. Food safety and health are the themes of today′s society. As a class of food-borne pathogens, Salmonella enteritidis had become one of the common zoonotic pathogens. Cinnamon essential oil (CEO) had been reported as an antibacterial agent, but there are few studies on its antibacterial mechanism. This study investigated the effects of CEO on oxidative damage and outer membrane protein genes of Salmonella enteritidis cells. First, the reactive oxygen species content in bacteria treated with different concentrations of cinnamon essential oil was determined by fluorescence spectrophotometry, and the effects of superoxide dismutase (SOD), catalase (CAT) and superoxide dismutase (SOD), and catalase (CAT) and peroxidase (POD) were determined by the kit method. The activity of POD and the content of malondialdehyde (MDA) were investigated to investigate the oxidative damage of CEO to Salmonella enteritidis cells. By analyzing the effect of CEO on the Salmonella enteritidis cell membrane’s outer membrane protein gene expression, the mechanism of CEO′s action on the Salmonella enteritidis cell membrane was preliminarily discussed. The results showed that CEO treatment had an obvious oxidative damaging effect on Salmonella enteritidis. Compared with the control group, the increase in CEO concentration caused a significant increase in the bacteria ROS content. The observation technique experiment found that with the increase in CEO concentration, the number of stained cells increased, which indicated that CEO treatment would increase the ROS level in the cells, and it would also increase with the increase in CEO concentration, thus causing the oxidation of cells and damage. In addition, CEO treatment also caused the disruption of the balance of the cellular antioxidant enzymes (SOD, CAT, POD) system, resulting in an increase in the content of MDA, a membrane lipid metabolite, and increased protein carbonylation, which ultimately inhibited the growth of Salmonella enteritidis. The measurement results of cell membrane protein gene expression levels showed that the Omp genes to be detected in Salmonella enteritidis were all positive, which indicated that Salmonella enteritidis carried these four genes. Compared with the control group, the relative expressions of OmpF, OmpA and OmpX in the CEO treatment group were significantly increased (p < 0.05), which proved that the cell function was disturbed. Therefore, the toxicity of CEO to Salmonella enteritidis could be attributed to the damage of the cell membrane and the induction of oxidative stress at the same time. It was speculated that the antibacterial mechanism of CEO was the result of multiple effects. This work was expected to provide a theoretical basis for the development of new natural food preservatives and the prevention and control of Salmonella enteritidis.

Funder

Gansu Agricultural University Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3