Effect of Solid Fat Content in Fat Droplets on Creamy Mouthfeel of Acid Milk Gels

Author:

Zhou Hui,Zhao Yan,Fan Di,Shen Qingwu,Liu Chengguo,Luo JieORCID

Abstract

Previous studies have shown that emulsions with higher solid fat content (SFC) are related to a higher in-mouth coalescence level and fat-related perception. However, the effect of SFC in fat droplets on the fat-related attributes of emulsion-filled gels has not been fully elucidated. In this study, the effect of SFC on the creamy mouthfeel of acid milk gel was investigated. Five kinds of blended milk fats with SFC values ranging from 10.61% to 85.87% were prepared. All crystals in the blended milk fats were needle-like, but the onset melting temperature varied widely. Blended milk fats were then mixed with skim milk to prepare acid milk gels (EG10–EG85, fat content 3.0%). After simulated oral processing, the particle size distribution and confocal images of the gel bolus showed that the degree of droplet coalescence in descending order was EG40 > EG20 > EG60 > EG10 ≥ EG85. There was no significant difference in apparent viscosity measured at a shear rate of 50/s between bolus gels, but the friction coefficients measured at 20 mm/s by a tribological method were negatively correlated with the coalescence result. Furthermore, quantitative descriptive analysis and temporal dominance of sensations analysis showed that SFC significantly affected the ratings of melting, mouth coating, smoothness and overall creaminess, as well as the perceived sequence and the duration of melting, smoothness and mouth coating of acid milk gels. Overall, our study highlights the role of intermediate SFC in fat droplets on the creamy mouthfeel of acid milk gels, which may contribute to the development of low-fat foods with desirable sensory perception.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3