Effects of Microvibrations and Their Damping on the Evolution of Pinot Noir Wine during Bottle Storage

Author:

Poggesi SimoneORCID,Merkytė Vakarė,Longo EdoardoORCID,Boselli EmanueleORCID

Abstract

Environmental conditions such as vibrations, temperature, and exposure to light can lower the quality of bottled wine, causing great economic and image losses for wineries. Even under optimal storage conditions, environmental microvibrations can be a constant source of energy transfer to the stored bottles, and little is known about their effects over time. In this study, the effects of microvibrations on a fine Pinot noir wine were evaluated over a storage period of one year under controlled conditions and compared with those obtained using natural magnetic levitation as a damping technique to reduce the power transmitted by the vibrations. The wines were subjected to the treatments according to the following experimental set-up: (A) wines not exposed to microvibrations, but to natural magnetic levitation; (B) wines placed on a shelf in contact with the floor, and exposed to microvibrations; (C) controls, a shelf in direct contact with the floor, without the application of microvibrations; (D) wines on a shelf with natural magnetic levitation and exposed to microvibrations. Phenolic and volatile compounds were not significantly different between treatments, which is in line with the reduced energy stress applied. In contrast, the storage time significantly influenced these chemical profiles. Through the sensory analysis performed after 0 and 12 months of storage, it was possible to distinguish the wines, as the overall quality improved, especially for the microvibration-treated samples. After 12 months of storage: (a) the overall sensory quality improved for all wines compared to the samples at T0; (b) the damping of microvibrations reduced the rate of wine evolution; (c) treatment with microvibration up to 6 months was useful for improving the quality of wine not yet ready for the market. Therefore, modulation of wine evolution can be achieved by applying a combination of microvibrations and their damping, depending on the enological objective.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3