Dry Heating of Cowpea Flour below Biopolymer Melting Temperatures Improves the Physical Properties of Bread Made from Climate-Resilient Crops

Author:

Renzetti StefanoORCID,Heetesonne Ine,Ngadze Ruth T.ORCID,Linnemann Anita R.

Abstract

Improving the technological functionality of climate-resilient crops (CRCs) to promote their use in staple foods, such as bread, is relevant to addressing food and nutrition security in Africa. Dry heating of cowpea flour (CPF) was studied as a simple technology to modulate CPF physicochemical properties in relation to bread applications. For this purpose, the melting behavior of cowpea starch and proteins in CPF was first studied and modeled using Flory–Huggins theory for polymer melting. Next, dry-heating conditions were investigated based on the predicted biopolymer melting transitions in CPF to be well below starch and protein melting. The pasting properties (i.e., peak viscosity, final viscosity, breakdown and setback) of CPF could be selectively modulated depending on temperature-time combinations without altering the thermal behavior (i.e., melting enthalpies) of CPF. Water-binding capacity and soluble solids decreased with the increased severity of the temperature-time combinations. Dry-heated CPF added to CRC-based bread significantly improved crumb texture. In particular, dry heating at 100 °C for 2 h provided bread with the highest crumb softness, cohesiveness and resilience. The positive effects on the crumb texture could be largely related to enhanced starch integrity, as indicated by a reduction in breakdown viscosity after treatment. Overall, dry heating of CPF under defined conditions is a promising technology for promoting the use of CPF as a techno-functional and protein-rich ingredient in bread-type products.

Funder

LEAP-Agri and Dutch Research Council NWO project NUTRIFOODS

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3