Effects of Temperature and pH on Recombinant Thaumatin II Production by Pichia pastoris

Author:

Joseph Jewel AnnORCID,Akkermans Simen,Van Impe Jan F. M.ORCID

Abstract

The sweet protein thaumatin is emerging as a promising sugar replacer in the market today, especially in the food and beverage sector. Rising demand for its production necessitates the large-scale extraction of this protein from its natural plant source, which can be limited in terms of raw material availability and production costs. Using a recombinant production technique via a yeast platform, specifically, Pichia pastoris, is more promising to achieve the product economically while maintaining batch-to-batch consistency. However, the bioproduction of recombinant proteins requires the identification of optimal process variables, constituting the maximal yield of the product of interest. These variables have a direct effect on the growth of the host organism and the secretion levels of the recombinant protein. In this study, two important environmental factors, pH, and temperature were assessed by cultivating P. pastoris in shake flasks to understand their influence on growth and the production levels of thaumatin II protein. The results from the pH study indicate that P. pastoris attained a higher viable cell density and secretion of protein at pH 6.0 compared to 5.0 when grown at 30 °C. Furthermore, within the three levels of temperatures investigated when grown at pH 6.0, the protein levels were the highest at 30 °C compared to 20 and 25 °C, whereas 25 °C exhibited the highest viable cell density. Interestingly, the trend observed from the qualitative effects of temperature and pH occurred in all the media that was investigated. These results broaden our understanding of how pH and temperature adjustment during P. pastoris cultivation aid in enhancing the production yields of thaumatin II prior to optimising the fed batch bioreactor operation.

Funder

KU Leuven Research Fund

Research Foundation - Flanders

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3