Comparative Transcriptomic Analyses Reveal the Regulatory Mechanism of Nutrient Limitation-Induced Sporulation of Antrodia cinnamomea in Submerged Fermentation

Author:

Li HuaxiangORCID,Ji Dan,Luo Zhishan,Ren Yilin,Lu Zhenming,Yang Zhenquan,Xu Zhenghong

Abstract

Antrodia cinnamomea is a precious edible and medicinal mushroom with various biological activities, such as hepatoprotection, antitumor, antivirus, immunoregulation, and intestinal flora regulation. However, the wild fruiting bodies of A. cinnamomea are scarce and expensive. Submerged fermentation based on spore inoculation has become the most efficient and popular artificial culture method for A. cinnamomea. In order to complement the mechanism of asexual sporulation of A. cinnamomea in submerged fermentation, and provide a theoretical basis to further improve the sporulation, comparative transcriptomics analysis using RNA-seq and RT-qPCR were conducted on A. cinnamomea mycelia cultured under different nutritional conditions to reveal the regulatory mechanism underlying the asexual sporulation induced by nutrient limitation. The obtained mechanism is as follows: under nitrogen starvation, the corresponding sensors transmit signals to genes, such as areA and tmpA, and promote their expression. Among these genes, AreA has a direct or indirect effect on flbD and promotes its expression, further enhancing the expression of brlA. Meanwhile, TmpA has a direct or indirect effect on brlA and promotes its expression; under carbon starvation, transport protein Rco-3, as a glucose sensor, directly or indirectly transmits signals to brlA and promotes its expression. BrlA promotes the expression of abaA gene, which further enhances the expression of wetA gene, and wetA then directly leads to asexual sporulation and promotes spore maturation; meanwhile, gulC can also promote cell autolysis, which provides energy and raw materials for sporulation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3