Effects of Cross-Linking on Physicochemical and Film Properties of Lotus (Nelumbo nucifera G.) Seed Starch

Author:

Chandak Ankita,Dhull Sanju BalaORCID,Punia Bangar SnehORCID,Rusu Alexandru VasileORCID

Abstract

Lotus seed starch was cross-linked using sodium trimetaphosphate (STMP) in varying amounts (1, 3, and 5%), and its rheological, pasting, thermal, and physicochemical properties were investigated. These cross-linked lotus seed starches (CL-LS-1, CL-LS-3, CL-LS-5) were also used to produce films (CL-LSFs), which were then examined for their mechanical characteristics, water vapor permeability, moisture content, opacity, thickness, and water solubility. After cross-linking, the solubility, amylose content, and swelling power of all the starch samples decreased. Cross-linking resulted in an increased pasting temperature, while peak viscosity (PV) decreased, with CL-LS-5 exhibiting the lowest peak viscosity (1640.22 MPa·s). In comparison to native starch, the thermal characteristics of CL-LS demonstrated greater gelatinization temperatures (To, Tp, Tc) and gelatinization enthalpy (ΔHgel). The gelatinization enthalpy of CL-LS varied between 152.70 and 214.16 J/g, while for native LS the value was 177.91 J/g. Lower moisture content, water solubility, and water vapor permeability were observed in the CL-LSFs. However, the cross-linking modification did not produce much effect on the film thickness. The highest tensile strength (12.52 MPa) and lowest elongation at break (26.11%) were found in CL-LSF-5. Thus, the starch films’ barrier and mechanical qualities were enhanced by cross-linking.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3