Surrogate Safety Measures Prediction at Multiple Timescales in V2P Conflicts Based on Gated Recurrent Unit

Author:

Miani MatteoORCID,Dunnhofer MatteoORCID,Micheloni Christian,Marini AndreaORCID,Baldo NicolaORCID

Abstract

Improving pedestrian safety at urban intersections requires intelligent systems that should not only understand the actual vehicle–pedestrian (V2P) interaction state but also proactively anticipate the event’s future severity pattern. This paper presents a Gated Recurrent Unit-based system that aims to predict, up to 3 s ahead in time, the severity level of V2P encounters, depending on the current scene representation drawn from on-board radars’ data. A car-driving simulator experiment has been designed to collect sequential mobility features on a cohort of 65 licensed university students who faced different V2P conflicts on a planned urban route. To accurately describe the pedestrian safety condition during the encounter process, a combination of surrogate safety indicators, namely TAdv (Time Advantage) and T2 (Nearness of the Encroachment), are considered for modeling. Due to the nature of these indicators, multiple recurrent neural networks are trained to separately predict T2 continuous values and TAdv categories. Afterwards, their predictions are exploited to label serious conflict interactions. As a comparison, an additional Gated Recurrent Unit (GRU) neural network is developed to directly predict the severity level of inner-city encounters. The latter neural model reaches the best performance on the test set, scoring a recall value of 0.899. Based on selected threshold values, the presented models can be used to label pedestrians near accident events and to enhance existing intelligent driving systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Before-after safety analysis of a shared space implementation;Case Studies on Transport Policy;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3