Measurement of Indoor Air Pollution in Bhutanese Households during Winter: An Implication of Different Fuel Uses

Author:

Khumsaeng Thipsukon,Kanabkaew Thongchai

Abstract

Measurements of indoor air pollution in Bhutanese households were conducted in winter with regards to the use of different fuels. These measurements were taken in Thimphu, Bhutan, for PM1, PM2.5, PM10, CO, temperature, air pressure and relative humidity in houses and offices with various fuels used for heaters and classified as the hospital, NEC, kerosene, LPG and firewood. The objective of this study was to measure the pollutant concentrations from different fuel uses and to understand their relationship to the different fuel uses and meteorological data using a time series and statistical analysis. The results revealed that the average values for each pollutant for the categories of the hospital, NEC, kerosene, LPG and firewood were as follows: CO (ppm) were 6.50 ± 5.16, 3.65 ± 1.42, 31.04 ± 18.17, 33.93 ± 26.41, 13.92 ± 17.58, respectively; PM2.5 (μg·m−3) were 7.24 ± 4.25, 4.72 ± 0.71, 6.01 ± 3.28, 5.39 ± 2.62, 18.31 ± 11.92, respectively; PM10 (μg·m−3) was 25.44 ± 16.06, 10.61 ± 4.39, 11.68 ± 6.36, 22.13 ± 9.95, 28.66 ± 16.35, respectively. Very coarse particles of PM10 were identified by outdoor infiltration for the hospital, NEC, kerosene and LPG that could be explained by the stable atmospheric conditions enhancing accumulation of ambient air pollutions during the measurements. In addition, high concentrations of CO from kerosene, LPG and firewood were found to be mainly from indoor fuel combustion. Firewood was found to the most polluting fuel for particulate matter concentrations. For the relationships of PM and meteorological data (Temp, RH and air pressure), they were well explained by linear regression while those for CO and the meteorological data, they were well explained by polynomial regression. Since around 40% of houses in Thimphu, Bhutan, use firewood for heating, it is recommended that ventilation should be improved by opening doors and windows in houses with firewood heaters to help prevent exposure to high concentrations of PM1, PM2.5, and PM10.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference45 articles.

1. Role of Human Exposure Assessment in Air Quality Management. Report on the Joint Workshop of World Health Organization Joint Research Center European Concerted Action “Urban Air, Indoor Environment and Human Exposure”https://apps.who.int/iris/handle/10665/107488

2. WHO Guidelines for Indoor Air Quality: Selected Pollutantshttps://apps.who.int/iris/bitstream/handle/10665/260127/9789289002134-eng.pdf?sequence=1&isAllowed=y

3. WHO IAQ Guidelines: Household Fuel Combustion—Review 4: Health Effects of Household Air Pollution (HAP) Exposurehttps://www.who.int/airpollution/household/guidelines/Review_4.pdf?ua=1

4. On the Development of Health-Based Ventilation Guidelines: Principles and Framework

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3