Author:
Chandrarathna H.P.S.U.,Liyanage T.D.,Edirisinghe S.L.,Dananjaya S.H.S.,Thulshan E.H.T.,Nikapitiya Chamilani,Oh Chulhong,Kang Do-Hyung,De Zoysa Mahanama
Abstract
This study evaluated the modulation of gut microbiota, immune responses, and gut morphometry in C57BL/6 mice, upon oral administration of S. maxima-derived modified pectin (SmP, 7.5 mg/mL) and pectin nanoparticles (SmPNPs; 7.5 mg/mL). Metagenomics analysis was conducted using fecal samples, and mice duodenum and jejunum were used for analyzing the immune response and gut morphometry, respectively. The results of metagenomics analysis revealed that the abundance of Bacteroidetes in the gut increased in response to both modified SmP and SmPNPs (75%) as compared with that in the control group (66%), while that of Firmicutes decreased in (20%) as compared with that in the control group (30%). The mRNA levels of mucin, antimicrobial peptide, and antiviral and gut permeability-related genes in the duodenum were significantly (p < 0.05) upregulated (> 2-fold) upon modified SmP and SmPNPs feeding. Protein level of intestinal alkaline phosphatase was increased (1.9-fold) in the duodenum of modified SmPNPs feeding, evidenced by significantly increased goblet cell density (0.5 ± 0.03 cells/1000 µm2) and villi height (352 ± 10 µm). Our results suggest that both modified SmP and SmPNPs have the potential to modulate gut microbial community, enhance the expression of immune related genes, and improve gut morphology.
Funder
National Research Foundation of Korea
Korea Institute of Ocean Science and Technology
Subject
Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献