Design of the Squared Daisy: A Multi-Mode Energy Harvester, with Reduced Variability and a Non-Linear Frequency Response

Author:

Gratuze MathieuORCID,Alameh Abdul HafizORCID,Nabki FredericORCID

Abstract

With the rise of the Internet of Things (IoT) and the ever-increasing number of integrated sensors, the question of powering these devices represents an additional challenge. The traditional approach is to use a battery; however, harvesting energy from the environment seems to be the most practical approach. To that end, the use of piezoelectric MEMS energy has been proven as a potential power source in a wide range of applications. In this work, a proof of concept for a new architecture for MEMS energy harvesters is presented. The influence of the dimensions and different characteristics of these designs is discussed. These designs have been proven to be resilient to process variation thanks to their unique architecture. This work presents the use of vibration enhancement petals in order to widen the bandwidth of the energy harvester and provide a non-linear frequency response. The use of these vibration enhancement petals has allowed the fabrication of three design variations, each using an area of 1700 µm by 1700 µm. These designs have an operating bandwidth between 3.9 kHz and 14.5 kHz and can be scaled to achieve other targeted resonant frequencies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3