Online Intelligent Perception of Front Blind Area of Vehicles on a Full Bridge Based on Dynamic Configuration Monitoring of Main Girders

Author:

Zeng Gang,Dan DanhuiORCID,Guan Hua,Ying Yufeng

Abstract

Establishing an online perception mechanism for a driver’s front blind area on a full bridge under vertical vortex-induced vibration (VVIV) is essential for ensuring road safety and traffic control on bridge decks under specific conditions. Based on accelerations of vibration monitoring of the main girders, this paper uses a real-time acceleration integration algorithm to obtain real-time displacements of measurement points; realizes the real-time estimation of the dynamic configurations of a main girder through parametric function fitting; and then can perceive the front blind area for vehicles driving on bridges experiencing VVIV in real time. On this basis, taking a long-span suspension bridge suffering from VVIV as an engineering example, the influence of different driving conditions on the front blind area is examined. Then, the applicability of the intelligent perception technology framework of the front blind area is verified. The results indicate that, during VVIV, the driver’s front blind area changes periodically and the vehicle model has the most significant impact on the front blind area; in contrast, the vehicle’s speed and the times of the vehicle entering the bridge have minimal impact on it. Meanwhile, it is shown that the framework can accurately perceive front blind areas of vehicles driving on the bridge, and identify different vehicle models, speeds and times of vehicle bridge entries in real time.

Funder

country

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Storebælt suspension bridge – vortex shedding excitation and mitigation by guide vanes

2. A Novel Approach Using Sensor Technologies for Enhancing Accident Safety Assistance System in Different Environments;Selvakarthi;Int. J. Sci. Technol. Res.,2020

3. Risks from Blind Spots of Trucks;Mazankova;Proceedings of the International Conference on Military Technologies (ICMT) 2015,2015

4. Analyzing the invisibility angles formed by vehicle blind spots to increase driver’s field of view and traffic safety

5. Influence of age, speed and duration of monotonous driving task in traffic on the driver’s useful visual field

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3